Hidden Surface Removal

April 27, 2006

Assignment 4 Hints
« Ed Angel 5.9.2:

[=2 far 0 right + left 0
right — left right — left
-2 far top + bottom 0
top — bottom | top — bottom

0 0 _ Jar+near 2 far*near
far —near far —near

0 0 -1 0o |

e Shear or Translation?

» Using only integers in Bresenham’s?

Hidden Surface Removal

» Object-space algorithms:

— Back-face culling (removal)

— Depth sorting and Painter’s algorithm
« Image-space algorithm:

— Z Buffer!

— Fast, but requires more memory.

Back-Face Culling

» For convex objects, we can’t see the
back faces.

* But, how do we determine the back
faces?

Removing Back-Faces

|dea: Compare the normal of each face with
the viewing direction

Given n, the outward-pointing normal of F

foreach face F of object
if (n-v>0)
throw away the face T

Deerm! 14 -

Does it work? ﬁ:'?

A

AR

2N2/2003 Lecture 10 21
We can't do view direction clipping just anywhere!
1 -
P : :
-y | I
| : :
7 1 1 1
0 P ! | :
el | =
o n i : :
- 1 1 1
' e 1 L ' ___
e | ! 1
AN i H
1
Downside: Projection comes fairly late in the pipeline. It would be nice to cull
objects sooner.
Upside: Computing the dot product is simpler. You need only look at the sign of
the z.
2N2/2003 Lecture 10 22

Culling Plane-Test

Here is a culling test that will work anywhere in the pipeline.

Remove faces that have the eye in their negative half-space. This requires
computing a plane equation for each face considered.

We'll will still need to compute the normal (How?).
But, we don't have to normalize it. (How do we go about computing a value for d?)

2N2/2003 Lecture 10 24

Painter’s Algorithm

» Draw from back to front.
No solution for:

— Cyclic ordering

— Intersecting surfaces

Z Buffer

» At each pixel, store the Z of the front-
most surface.

* If the new Z is larger, it's occluded.

* If the new Z is smaller, then:
— Draw the new surface
— Update the Z

Other Algorithms

« Scan-line algorithm: See Section 7.11 of
Ed Angel’s book (4" Ed).

* For more advanced research in this
area, see:

— Chen and Wang, SIGGRAPH 1996.
— Snyder and Lengyel, SIGGRAPH 1998.

from the previous lecture...

Projection Matrix

[—2far 0 right + left
wx! right — left right — left
wy! 0 -2 far top + bottom 0
V1= top — bottom _top — bottom
w2 0 0 _ far+near 2 far* near
w far —near far —near
i 0 0 -1 0 |

— N e xR

Range of Z

* If Z=near, whatis Z’?
-1
o If Z="far, whatis Z2’?
1
» Does Z' change linearly with Z?
— No!
-Z =wZ /w=(a*Z+b)/Z=a+b/Z

Z Resolution

» Since screen Z' is expressed in the form
of a+b/Z, most of the Z resolution is
used up by the Z's closer to the near
plane.

e So, what does this mean?

* You shouldn’t set zNear to be very
close to the eye position.

Near=10 » Near=100

Far=1000 Far=1000
11 L1 3
09 09
0.7 Iv 0.7
s If 0 /
0.1 ! 0:1
0.1 + -0.1 ;
03 «‘ -0.3 ;
0.5 05
-0.7 ll -0.7 f
-0.9 -09 4
-1.1 -11
2p0 A 600 800 1000 0 2I)0 A 600 800 1000
L |

Notice the change in the range of Z after transformation (in NDC
space) for the original Z (in eye space) between 200 and 400 (marked
by the Red boxes).

Why Not Linear?

 To make it linear, we will have to make
WZ' = a*Z? + bZ (so that Z’ = WZ'/W =
a*Z+Db)

» But that’s impossible with the
perspective matrix...

Linear Z Buffer or W Buffer

« Wait! Why is linear Z impossible under
perspective projection? Can’t we simply
ignore the divide-by-w step for Z?

* Yes, but we no longer have the nice
math of the homogeneous coordinates

wx X wx'
1 1
wy o 1y WY,
v S v ° ' :
wz z z
w I 1 w

Division by w

	Hidden Surface Removal
	Assignment 4 Hints
	Hidden Surface Removal
	Back-Face Culling
	
	
	
	Painter’s Algorithm
	Z Buffer
	Other Algorithms
	
	Projection Matrix
	Range of Z
	Z Resolution
	Why Not Linear?
	Linear Z Buffer or W Buffer

